
“From 2016 to 2020, the entire machine learning and data science
industry has been dominated by two approaches: deep learning and
gradient boosted trees. Specifically, gradient boosted trees is used
for problems where structured data is available, whereas deep
learning is used for perceptual problems such as image
classification. . . . These are the two techniques you should be most
familiar with in order to be successful in applied machine learning
today”

F. Chollet [2021]

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.1 1 / 12

Deep learning allows computational models that are composed of
multiple processing layers to learn representations of data with
multiple levels of abstraction. These methods have dramatically
improved the state-of-the-art in speech recognition, visual object
recognition, object detection and many other domains such as drug
discovery and genomics. Deep learning discovers intricate structure
in large data sets by using the backpropagation algorithm to
indicate how a machine should change its internal parameters that
are used to compute the representation in each layer from the
representation in the previous layer. Deep convolutional nets have
brought about breakthroughs in processing images, video, speech
and audio, whereas recurrent nets have shone light on sequential
data such as text and speech.

Y. LeCun, Y. Bengio, G. Hinton [2015]

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.1 2 / 12

Feed-forward neural networks

Feed-forward neural networks are directed acyclic graphs:

input layer

output layer

hidden layer

complete linear function

activation function

complete linear function

activation function

complete linear function

hidden layer

1

1

1

activation function

Each hidden unit outputs a linear function of its inputs
followed by a non-linear activation function.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.1 5 / 12

Neural network properties

The depth of a neural network is the number of layers.

The width of a layer is the number of elements in the vector
output of the layer.

The width of a neural network is the maximum width over all
layers.

The size of the output and input are usually specified as part
of the problem definition.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.1 12 / 12

Feed-forward neural networks

A feed-forward neural network implements the function

f (x) = fn(fn−1(. . . f2(f1(x))))

x is a vector of input values (the input layer)
Each function fi maps a vector into a vector.
Each component of an output vector is called a unit.
Function fi is the ith layer.
The last layer, fn, is the output layer.
The other layers are called hidden layers.
The number of functions, n, is the depth of the network.
“Deep” in deep learning refers to the depth of the network.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.1 6 / 12

Feed-forward neural networks

Each layer fi is

a linear function with learnable parameters of each output
given the input
followed by a non-linear activation function, ϕ.
The linear function takes a vector in and an extra constant
input with value “1”, and returns a vector out:

out[j] = ϕ(
∑
k

in[k] ∗ w [k , j])

for a 2-dimensional array w of weights.
The weight associated with the extra 1 input is the bias.
The weight w [i , j] for each input–output pair of the layer,
plus a bias for each output.
The outputs of one layer are the inputs to the next.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.1 7 / 12

Neural network inputs

The input to a neural network is a vector of real numbers.

Boolean variables are represented using 1 for true and either 0
or −1 for false.
Categorical variables can be represented using indicator
variables – a binary variable for each value – forming a
one-hot encoding

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.1 11 / 12

Activation function: ReLU

A common activation function is the rectified linear unit
(ReLU):

phi(x) = max(0, x)

or

ϕ(x) =

{
0 if x < 0
x if x ≥ 0

The derivative of ϕ is

∂ϕ

∂x
(x) =

{
0 if x < 0
1 if x ≥ 0

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.1 8 / 12

Activation function for output

The activation function and what is being optimized depends on
the type of the output layer:

If output is real, optimize squared loss, and use the identity
function: ϕ(x) = x
If output is Boolean, use binary log loss, with a sigmoid
function:

ϕ(x) = sigmoid(x) =
1

1 + exp(−x)

If output y is categorical, but not binary, use categorical log
loss with a softmax function. The output layer has one unit
for each value in the domain of y (for example, MNIST).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.1 9 / 12

What can a neural network represent?

The function “if x then y else z” cannot be represented using
logistic regression. It can be approximated with the neural network:

x y1

-1
0 1 1-1 0

-5
10 10

ReLU ReLU

Sigmoid

z

1
0

1

The function can be represented as (x ∧ y) ∨ (¬x ∧ z)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.1 10 / 12

Gradient Descent

If the domains are continuous, Gradient descent movies each
each variable downhill; proportional to the gradient of the
heuristic function in that direction.
The value of variable Xi goes from vi to vi − η ∂h

∂Xi
.

η is the step size.

Neural networks do gradient descent with many parameters
(variables) to minimize an error on a dataset. Some large
language models have over 1012 parameters.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 2 / 15

Differentiation

Two properties of differentiation are used in backpropagation:

Linear rule: the derivative of a linear function, aw + b, is
given by:

∂

∂w
(aw + b) = a

Chain rule: if g is a function of w and function f , which does
not depend on w , is applied to g(w), then

∂

∂w
f (g(w)) = f ′(g(w)) ∗ ∂

∂w
g(w)

where f ′ is the derivative of f .

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 3 / 15

Use of chain rule

A network represents f (e) = fn(fn−1(. . . f2(f1(xe)))), where
example e has features xe . Suppose vi = fi (vi−1) and v0 = xe .
Consider weight w used in the definition of fj :

∂

∂w
error(f (e))

= error ′(vn) ∗
∂

∂w
fn(vn−1)

= error ′(vn) ∗
∂

∂w
fn(fn−1(vn−2))

= error ′(vn) ∗ f ′n(vn−1) ∗
∂

∂w
(fn−1(vn−2))

= error ′(vn) ∗ f ′n(vn−1) ∗ f ′n−1(vn−2) ∗ · · · ∗
∂

∂w
(fj(vj−1))

where f ′i is the derivative of fi with respect to its inputs.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 4 / 15

Backpropagation

Backpropagation implements (stochastic) gradient descent for
all weights.

Two passes:
▶ Prediction: given inputs compute outputs of each layer
▶ Back propagate: Going backwards,

error ′(vn) ∗
k∏

i=0

f ′n−i (vn−i−1)

for k starting from 0 are computed and passed to the lower
layers. Weights in each layer are updated.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 5 / 15

Dense linear function

1: class Dense(ni , no) ▷ ni is # inputs, no is #outputs
2: for each 0 ≤ i ≤ ni and each 0 ≤ j < no do
3: d [i , j] := 0; w [i , j] := a random value

4: def output(in) ▷ in is array with length ni
5: for each j do out[j] := w [ni , j] +

∑
i in[i] ∗ w [i , j]

6: return out
7: def Backprop(error) ▷ error is array with length no
8: for each i , j do d [i , j] := d [i , j] + in[i] ∗ error [j]
9: for each i do ierror [i] :=

∑
j w [i , j] ∗ error [j]

10: return ierror
11: def update() ▷ update weights. η is learning rate.
12: for each i , j do
13: w [i , j] := w [i , j]− η/batch size ∗ d [i , j]
14: d [i , j] := 0

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 7 / 15

Neural-network learner

functions is the list of functions that compose the neural network.

1: repeat
2: batch := random sample of batch size examples
3: for each example e in batch do
4: for each input unit i do values[i] := Xi (e)

5: for each fun in functions from lowest to highest do
6: values := fun.output(values)

7: for each output unit j do
error [j] := ϕo(values[j])− Ys[j]

8: for each fun in functions from highest to lowest do
9: error := fun.Backprop(error)

10: for each fun in functions that contains weights do
11: fun.update()

12: until termination

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 6 / 15

RMS-Prop Optimization
In RMS-Prop the magnitude of the change in a weight
depends on how its gradient compares to its historic value.
It maintains r , a rolling average of the square of the gradient.
For a dense layer, the update method becomes:

1: def update() ▷ update weights
2: for each i , j do
3: g := d [i , j]/batch size
4: r [i , j] := ρ ∗ r [i , j] + (1− ρ) ∗ g2

5: w [i , j] := w [i , j]− η ∗ g√
r [i , j] + ϵ

6: d [i , j] := 0 .

ϵ (≈ 10−7) is used to ensure numerical stability.

When r [i , j] ≈ g2 ≫ ϵ, the ratio g/
√

r [i , j] + ϵ is
approximately 1 or −1, depending on the sign of g .

When g2 ≪ r [i , j], the step size is smaller than η.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 10 / 15

Initialization

Real-valued variables are normalized by subtracting the mean,
and dividing by the standard deviation.

In a one-hot encoding, categorical input variable X with
domain {v1, . . . , vk} is represented as k input indicator
variables, X1, . . . ,Xk . An input example with X = vj is
represented with Xj = 1 and every other Xj ′ = 0.

What happens if the weights in the hidden layers are all set to
the same value?

For the output units, non-bias weights can be set to zero and
the bias weights to the mean for regression or inverse-sigmoid
of the empirical probability for classification. (Why?)

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 12 / 15

Pragmatics of Training Neural Networks

Make sure it is learning something: The error on the training
set should beat a naive baseline corresponding to the loss
being evaluated.
If the performance on the training set is poor, change the
model.

(Poor performance on the training set indicates under-fitting.)
Test the error on the validation set. If the validation error
does not improve as the algorithm proceeds, it means the
learning is not generalizing, and it is fitting to noise.
(Poor performance on the validation set indicates overfitting.)
In this case you should simplify the model.

Then carry out hyperparameter tuning.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 13 / 15

Hyperparameter Tuning

The hyperparameters that can be tuned include:

the algorithm (a decision tree or gradient-boosted trees may
be more appropriate than a neural network)
number of layers
width of each layer
number of epochs, to allow for early stopping
learning rate
batch size

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 8.2 14 / 15

	lect_08_1_h.pdf
	lect_08_2_h.pdf

