
4 Feb 2004 CS 3243 - Constraint Satisfaction 1

Constraint Satisfaction
Problems

Based on Norvig&Russell, Ch. 5

4 Feb 2004 CS 3243 - Constraint Satisfaction 2

Constraint satisfaction problems (CSPs)

  Standard search problem: state is a "black box“ – any data structure that
supports successor function, heuristic function, and goal test

  Constraint Satisfaction Problems:

  state is defined by variables Xi with values from domain Di

  goal test is a set of constraints specifying allowable combinations of values
for subsets of variables

  Simple example of a formal representation language

  Supports useful general-purpose algorithms with more power than standard
search algorithms

4 Feb 2004 CS 3243 - Constraint Satisfaction 3

Example: Map-Coloring

  Variables WA, NT, Q, NSW, V, SA, T
  Domains Di = {red,green,blue}
  Constraints: adjacent regions must have different colors

  e.g., WA ≠ NT, or (WA,NT) in {(red,green),(red,blue),(green,red),
(green,blue),(blue,red),(blue,green)}

4 Feb 2004 CS 3243 - Constraint Satisfaction 4

Example: Map-Coloring

  Solutions are complete and consistent assignments,
e.g., WA = red, NT = green,Q = red, NSW =
green,V = red,SA = blue,T = green

4 Feb 2004 Constraint Satisfaction 5

Constraint graph

  Binary CSP: each constraint relates two variables

  Constraint graph: nodes are variables, arcs are constraints

4 Feb 2004 CS 3243 - Constraint Satisfaction 6

Varieties of CSPs

Discrete variables
  finite domains:

  n variables, domain size d O(dn) complete assignments
  e.g., Boolean CSPs, incl.~Boolean satisfiability (NP-complete)

  infinite domains:
  integers, strings, etc.
  e.g., job scheduling, variables are start/end days for each job
  need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

Continuous variables
  e.g., start/end times for Hubble Space Telescope observations
  linear constraints solvable in polynomial time by linear programming

4 Feb 2004 CS 3243 - Constraint Satisfaction 7

Varieties of constraints

  Unary constraints involve a single variable,
  e.g., SA ≠ green

  Binary constraints involve pairs of variables,
  e.g., SA ≠ WA

  Higher-order constraints involve 3 or more
variables,
  e.g., cryptarithmetic column constraints

4 Feb 2004 CS 3243 - Constraint Satisfaction 8

Example: Cryptarithmetic

Variables: F T U W
R O X1 X2 X3

Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Constraints: Alldiff (F, T, U, W, R, O)

  O + O = R + 10 · X1
  X1 + W + W = U + 10 · X2
  X2 + T + T = O + 10 · X3
  X3 = F, T ≠ 0, F ≠ 0

4 Feb 2004 CS 3243 - Constraint Satisfaction 9

Real-world CSPs

Assignment problems
  e.g., who teaches what class

Timetabling problems
  e.g., which class is offered when and where?

Transportation scheduling

Factory scheduling

Many real-world problems involve real-valued variables

4 Feb 2004 CS 3243 - Constraint Satisfaction 10

Standard search formulation (incremental)

Let's start with the straightforward approach, then fix it

States are defined by the values assigned so far

  Initial state: the empty assignment { }
  Successor function: assign a value to an unassigned variable that does

not conflict with current assignment
 fail if no legal assignments

  Goal test: the current assignment is complete
1.  This is the same for all CSPs
2.  Every solution appears at depth n with n variables

 use depth-first search
3.  Path is irrelevant, so we can also use complete-state formulation
4.  b = (n - l)d at depth l, hence n! · dn leaves

4 Feb 2004 CS 3243 - Constraint Satisfaction 11

Backtracking search

  Variable assignments are commutative}
So [WA = red then NT = green] same as [NT = green then WA = red]

  Only need to consider assignments to a single variable at each node
 b = d and there are d^n leaves

  Depth-first search for CSPs with single-variable assignments is called
backtracking search

  Backtracking search is the basic uninformed algorithm for CSPs

  Can solve n-queens for n ≈ 25

4 Feb 2004 CS 3243 - Constraint Satisfaction 12

Backtracking search

4 Feb 2004 CS 3243 - Constraint Satisfaction 13

Backtracking example

4 Feb 2004 CS 3243 - Constraint Satisfaction 14

Backtracking example

4 Feb 2004 CS 3243 - Constraint Satisfaction 15

Backtracking example

4 Feb 2004 CS 3243 - Constraint Satisfaction 16

Backtracking example

4 Feb 2004 CS 3243 - Constraint Satisfaction 17

Improving backtracking efficiency

General-purpose methods can give huge gains
in speed:

  Which variable should be assigned next?

  In what order should its values be tried?

  Can we detect inevitable failure early?

4 Feb 2004 CS 3243 - Constraint Satisfaction 18

Most constrained variable

Most constrained variable:
choose the variable with the fewest legal values

a.k.a. minimum remaining values (MRV)
heuristic

4 Feb 2004 CS 3243 - Constraint Satisfaction 19

Most constraining variable

  Tie-breaker among most constrained
variables

  Most constraining variable:

  choose the variable with the most constraints on
remaining variables

4 Feb 2004 CS 3243 - Constraint Satisfaction 20

Least constraining value

  Given a variable, choose the least constraining value:
the one that rules out the fewest values in the remaining variables

  Combining these heuristics makes 1000 queens feasible

4 Feb 2004 CS 3243 - Constraint Satisfaction 21

Forward checking

  Idea:
  Keep track of remaining legal values for unassigned variables
  Terminate search when any variable has no legal values

4 Feb 2004 CS 3243 - Constraint Satisfaction 22

Forward checking

  Idea:
  Keep track of remaining legal values for unassigned variables
  Terminate search when any variable has no legal values

4 Feb 2004 CS 3243 - Constraint Satisfaction 23

Forward checking

  Idea:
  Keep track of remaining legal values for unassigned variables
  Terminate search when any variable has no legal values

4 Feb 2004 CS 3243 - Constraint Satisfaction 24

Forward checking

  Idea:
  Keep track of remaining legal values for unassigned variables
  Terminate search when any variable has no legal values

4 Feb 2004 CS 3243 - Constraint Satisfaction 25

Constraint propagation

  Forward checking propagates information from assigned to unassigned
variables, but doesn't provide early detection for all failures:

  NT and SA cannot both be blue!

  Constraint propagation repeatedly enforces constraints locally

4 Feb 2004 CS 3243 - Constraint Satisfaction 26

Arc consistency

  Simplest form of propagation makes each arc consistent
  X Y is consistent iff

for every value x of X there is some allowed y

4 Feb 2004 CS 3243 - Constraint Satisfaction 27

Arc consistency

  Simplest form of propagation makes each arc consistent
  X Y is consistent iff

for every value x of X there is some allowed y

4 Feb 2004 CS 3243 - Constraint Satisfaction 28

Arc consistency

  Simplest form of propagation makes each arc consistent
for every value x of X there is some allowed y

  If X loses a value, neighbors of X need to be rechecked

4 Feb 2004 CS 3243 - Constraint Satisfaction 29

Arc consistency

Arc consistency detects failure earlier than forward checking
and can be run as a preprocessor or after each assignment

4 Feb 2004 CS 3243 - Constraint Satisfaction 30

Arc consistency algorithm AC-3

Time complexity: O(n2d3)

4 Feb 2004 CS 3243 - Constraint Satisfaction 31

Local search for CSPs

  Hill-climbing and simulated annealing typically work with "complete"
states, i.e., all variables assigned

  To apply to CSPs:
  allow states with unsatisfied constraints
  operators reassign variable values

  Variable selection: randomly select any conflicted variable

  Value selection by min-conflicts heuristic:
  choose value that violates the fewest constraints
  i.e., hill-climb with h(n) = total number of violated constraints

4 Feb 2004 CS 3243 - Constraint Satisfaction 32

Example: 4-Queens

  States: 4 queens in 4 columns (44 = 256 states)
  Actions: move queen in column
  Goal test: no attacks
  Evaluation: h(n) = number of attacks

  Given random initial state, can solve n-queens in almost constant time
for arbitrary n with high probability (e.g., n = 10,000,000)

4 Feb 2004 CS 3243 - Constraint Satisfaction 33

Summary

  CSPs are a special kind of problem:
  states defined by values of a fixed set of variables
  goal test defined by constraints on variable values

  Backtracking = depth-first search with one variable assigned per node

  Variable ordering and value selection heuristics help significantly

  Forward checking prevents assignments that guarantee later failure

  Constraint propagation (e.g., arc consistency) does additional work to
constrain values and detect inconsistencies

  Iterative min-conflicts is usually effective in practice

