
Heuristic Search

Idea: don’t ignore the goal when selecting paths.

Often there is extra knowledge that can be used to guide the
search: heuristics.

A heuristic function h(n) is a nonnegative estimate of the cost
of the least-cost path from node n to a goal node.

h(n) needs to be efficient to compute.

h can be extended to paths: h(⟨n0, . . . , nk⟩) = h(nk).

h(n) is an underestimate if there is no path from n to a goal
with cost less than h(n).

An admissible heuristic is a heuristic function that is an
underestimate of the actual cost of a path to a goal.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.3 2 / 16

Example Heuristic Functions

If the nodes are points on a Euclidean plane and the cost is
the distance, h(n) can be the straight-line distance from n to
the closest goal.

If the nodes are locations and cost is time, we can use the
distance to a goal divided by the maximum speed.

If the goal is to collect all of the coins and not run out of fuel,
the cost is an estimate of how many steps it will take to
collect the rest of the coins, refuel when necessary, and return
to goal position.

A heuristic function can be found by solving a simpler (less
constrained) version of the problem.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.3 3 / 16

Heuristic depth-first Search

Idea: in depth-first search select a neighbor that is closest to a
goal according to the heuristic function.

It inherits all of the advantages/disadvantages of depth-first
search, but locally heads towards a goal.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.3 4 / 16

Best-first Search

Idea: select a path whose end is closest to a goal according to
the heuristic function.

Best-first search selects a path on the frontier with minimal
h-value.

It treats the frontier as a priority queue ordered by h.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.3 5 / 16

Illustrative Graph — Heuristic Search

From A get to G :

E

B

C A

H
F

D

G

7 69

5

3
5 3

0J4

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.3 6 / 16

A∗ Search

A∗ search uses both path cost and heuristic values

cost(p) is the cost of path p.

h(p) estimates the cost from the end of p to a goal.

Let f (p) = cost(p) + h(p).
f (p) estimates the total path cost of going from a start node
to a goal via p.

start
path p−→ n︸ ︷︷ ︸

cost(p)

estimate−→ goal︸ ︷︷ ︸
h(p)︸ ︷︷ ︸

f (p)

In A∗ search, the frontier is a priority queue ordered by f (p).

It always selects the path on the frontier with the lowest
estimated cost from the start to a goal node constrained to go
via that path.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.3 7 / 16

Example graph with heuristics (acyclic)

Start: A. Goal: G .

E

B

C A

H
F

D

G

3

2

4

2

3
2 4

3

7 69

5

3
5 3

0J

7

44

Heuristic value of a node is shown next to the node.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.3 8 / 16

Example graph with heuristics

Start: A. Goal: G .

E

B

C A

H
F

D

G

3

2

4

2

3
2 4

3

7 69

5
5 3

0J

7

44

3

Heuristic value of a node is shown next to the node.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.3 9 / 16

A∗ Search Algorithm

A∗ is a mix of lowest-cost-first and best-first search.

It treats the frontier as a priority queue ordered by f (p).

It always selects the node on the frontier with the lowest
estimated distance from the start to a goal node constrained
to go via that node.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.3 10 / 16

Complexity of A∗ Search

Does A∗ search guarantee to find the path with fewest arcs?

Does A∗ search guarantee to find the least-cost path?

What happens on infinite graphs or on graphs with cycles if
there is a solution?

What is the time complexity as a function of length of the
path selected?

What is the space complexity as a function of length of the
path selected?

How does the goal affect the search?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.3 11 / 16

Admissibility of A∗

If there is a solution, A∗ always finds an optimal solution – -the
first path to a goal selected — if

the branching factor is finite

arc costs are bounded above zero (there is some ϵ > 0 such
that all of the arc costs are greater than ϵ), and

h(n) is nonnegative and an underestimate of the cost of the
shortest path from n to a goal node:

0 ≤ h(n) ≤ cost of shortest path from n to a goal

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.3 12 / 16

Why is A∗ admissible?

If a path p to a goal is selected from the frontier, can there be
a lower cost path to a goal?

h(p) = 0

Suppose path p′ is on the frontier. Because p was chosen
before p′, and h(p) = 0:

cost(p) ≤ cost(p′) + h(p′).

Because h is an underestimate:

cost(p′) + h(p′) ≤ cost(p′′)

for any path p′′ to a goal that extends p′.

So cost(p) ≤ cost(p′′) for any other path p′′ to a goal.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.3 13 / 16

Why is A∗ admissible?

A∗ can always find a solution if there is one:

The frontier always contains the initial part of a path to a
goal, before that goal is selected.

A∗ halts, as the costs of the paths on the frontier keeps
increasing, and will eventually exceed any finite number.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.3 14 / 16

How do good heuristics help?

Suppose c is the cost of an optimal solution. What happens to a
path p from a start node, where

cost(p) + h(p) < c
It will be expanded

cost(p) + h(p) > c
It will not be expanded

cost(p) + h(p) = c
It might or might not be expanded.

How can a better heuristic function help?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.3 15 / 16

Summary of Search Strategies

Strategy Frontier Selection Complete Halts Space

Depth-first Last node added No No Linear
Breadth-first First node added Yes No Exp
Heuristic depth-first Local min h(p) No No Linear
Best-first Global min h(p) No No Exp
Lowest-cost-first Minimal cost(p) Yes No Exp
A∗ Minimal f (p) Yes No Exp

Complete — if there a path to a goal, it can find one, even on
infinite graphs.
Halts — on finite graph (perhaps with cycles).
Space — as a function of the length of current path

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.3 16 / 16

Cycle Pruning

s

A searcher can prune a path that ends in a node already on
the path, without removing an optimal solution.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 3 / 19

Graph searching with cycle pruning

Input: a graph,
a set of start nodes,
Boolean procedure goal(n) that tests if n is a goal node.

frontier := {⟨s⟩ : s is a start node}
while frontier is not empty:

select and remove path ⟨n0, . . . , nk⟩ from frontier
if nk ̸∈ {n0, . . . , nk−1} :

if goal(nk):
return ⟨n0, . . . , nk⟩

Frontier := Frontier ∪ {⟨n0, . . . , nk , n⟩ : ⟨nk , n⟩ ∈ A}

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 4 / 19

Cycle Pruning

s

In depth-first search, checking for cycles can be done in
constant time in path length.

For other methods, checking for cycles can be done in linear
time in path length.

With cycle pruning, which algorithms halt on finite graphs?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 5 / 19

Multiple-Path Pruning

s

Multiple path pruning: prune a path to node n that the
searcher has already found a path to.

What needs to be stored?

Lowest-cost-first search with multiple-path pruning is
Dijkstra’s algorithm, and is the same as A∗ with multiple-path
pruning and a heuristic function of 0.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 6 / 19

Graph searching with multiple-path pruning

Input: a graph,
a set of start nodes,
Boolean procedure goal(n) that tests if n is a goal node.

frontier := {⟨s⟩ : s is a start node}
expanded := {}
while frontier is not empty:

select and remove path ⟨n0, . . . , nk⟩ from frontier
if nk ̸∈ expanded :

add nk to expanded
if goal(nk):

return ⟨n0, . . . , nk⟩
Frontier := Frontier ∪ {⟨n0, . . . , nk , n⟩ : ⟨nk , n⟩ ∈ A}

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 7 / 19

Multiple-Path Pruning

How does multiple-path pruning compare to cycle pruning?

Which search algorithms with multiple-path pruning always
halt on finite graphs?

What is the time overhead of multiple-path pruning?

What is the space overhead of multiple-path pruning?

Is it better for depth-first or breadth-first searches?

Can multiple-path pruning prevent an optimal solution being
found?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 8 / 19

Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to n has a lower cost than the
first path to n?

remove all paths from the frontier that use the longer path.

change the initial segment of the paths on the frontier to use
the lower-cost path.

ensure this doesn’t happen. Make sure that the lower-cost
path to a node is expanded first.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 9 / 19

Multiple-Path Pruning & A∗

Suppose path p to n was selected, but there is a lower-cost
path to n. Suppose this lower-cost path is via path p′ on the
frontier.

Suppose path p′ ends at node n′.

p was selected before p′, so:
cost(p) + h(n) ≤ cost(p′) + h(n′).

Suppose cost(n′, n) is the actual cost of a path from n′ to n.
The path to n via p′ has a lower cost that p so:
cost(p′) + cost(n′, n) < cost(p).

cost(n′, n) < cost(p)− cost(p′) ≤ h(n′)− h(n).

We can ensure this doesn’t occur if
h(n′)− h(n) ≤ cost(n′, n).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 10 / 19

Monotone Restriction

Heuristic function h satisfies the monotone restriction if
h(m)− h(n) ≤ cost(m, n) for every arc ⟨m, n⟩.
If h satisfies the monotone restriction, A∗ with multiple path
pruning always finds a least-cost path to a goal.

This is a strengthening of the admissibility criterion.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 11 / 19

Direction of Search

The definition of searching is symmetric: find path from start
nodes to goal node or from goal node to start nodes (with
reversed arcs).

Forward branching factor: number of arcs out of a node.

Backward branching factor: number of arcs into a node.

Search complexity is bn. Should use forward search if forward
branching factor is less than backward branching factor, and
vice versa.

Note: when graph is dynamically constructed, the backwards
graph may not be available. One might be more difficult to
compute than the other.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 12 / 19

Bidirectional Search

Idea: search backward from the goal and forward from the
start simultaneously.

This wins as 2bk/2 ≪ bk .
This can result in an exponential saving in time and space.

The main problem is making sure the frontiers meet.

This is often used with
▶ a breadth-first method (e.g., least-cost-first search) that builds

a set of states that can lead to the goal quickly.
▶ in the other direction, another method (typically depth-first)

can be used to find a path to these interesting states.
▶ How much is stored in the breadth-first method, can be tuned

depending on the space available.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 13 / 19

Island Driven Search

Idea: find a set of islands between s and g .

s −→ i1 −→ i2 −→ . . . −→ im−1 −→ g

There are m smaller problems rather than 1 big problem.

This can win as mbk/m ≪ bk .

The problem is to identify the islands that the path must pass
through. It is difficult to guarantee optimality.

Requires more knowledge than just the graph and a heuristic
function.

The subproblems can be solved using islands =⇒ hierarchy of
abstractions.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 14 / 19

Dynamic Programming

Idea: Let cost to goal(n) be the actual cost of a lowest-cost path
from node n to a goal; cost to goal(n) can be defined as

cost to goal(n)

=

{
0 if goal(n),
min⟨n,m⟩∈A(cost(⟨n,m⟩) + cost to goal(m)) otherwise.

For a finite graph, we can precompute and store this using
least-cost-first search with MPP, in the reverse graph.

This can be used locally to determine what to do from any
state.
There are two main problems:
▶ It requires enough space to store the graph.
▶ The cost to goal function needs to be recomputed for each

goal.

Implementation detail: in Python, make expanded in MPP a
dictionary, so expanded [s] returns the cost from s to goal
(cost found in search).

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 15 / 19

Example graph with heuristics

Goal: G .

E

B

C A

H
F

D

G

3

2

4

2

3
2 4

3
J

6

4

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 16 / 19

Example graph cost-to-goal

Goal: G .

E

B

C A

H
F

D

G

3

2

4

2

3
2 4

3

11 711

12
9 3

0J

7

44

Value on nodes are cost to goal of arc.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 17 / 19

(Partial) dynamic programming as a source of heuristics

Suppose

there is not enough time or space to store the cost-to-goal for
all nodes

we stop the least-cost-first search early, and have expanded all
paths with cost less than c . expanded is only defined for some
states

h is any admissible heuristic function that satisfies the
montone restriction.

The heuristic function

h′(n) =

{
expanded [n] if expanded [n] is defined,
max(c , h(n)) otherwise.

is an admissible heuristic function that that satisfies the montone
restriction and (generally) improves h, as it is perfect for all values
less than c .

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.4 18 / 19

Summary of Search Strategies

Strategy Frontier Complete Halts Space

Depth-first w/o CP Last added No No Linear
Depth-first w CP Last added No Yes Linear
Depth-first w MPP Last added No Yes Exp
Breadth-first w/o MPP First added Yes No Exp
Breadth-first w MPP First added Yes Yes Exp
Best-first w/o MPP Min h(p) No No Exp
Best-first w MPP Min h(p) No Yes Exp
A∗ w/o MPP Min f (p) Yes No Exp
A∗ w MPP Min f (p) Yes Yes Exp

Complete — if there a path to a goal, it can find one, even on
infinite graphs.
Halts — on finite graph (perhaps with cycles).
Space — as a function of the length of current path
Assume graph satisfies the assumptions of A∗ proof + montonicity

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.5 2 / 11

Bounded Depth-first search

A bounded depth-first search takes a bound (cost or depth)
and does not expand paths that exceed the bound.
▶ explores part of the search graph
▶ uses space linear in the depth of the search.

How does this relate to other searches?

How can this be extended to be complete?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.5 3 / 11

Which shaded goal will a depth-bounded search find first?

Q W

T

U

Y

R

V

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.5 4 / 11

Iterative-deepening search

Iterative-deepening search:
▶ Start with a bound b = 0.
▶ Do a bounded depth-first search with bound b
▶ If a solution is found return that solution
▶ Otherwise increment b and repeat.

This will find the same first solution as what other method?

How much space is used?

What happens if there is no path to a goal?

Surely recomputing paths is wasteful!!!

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.5 5 / 11

Iterative Deepening Complexity

Complexity with solution at depth k & branching factor b:

level breadth-first iterative deepening # nodes

1 1 k b
2 1 k − 1 b2

.
k − 1 1 2 bk−1

k 1 1 bk

total ≥ bk ≤ bk
(

b
b−1

)2

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.5 6 / 11

Depth-first Branch-and-Bound

combines depth-first search with heuristic information.

finds optimal solution.

most useful when there are multiple solutions, and we want an
optimal one.

uses the space of depth-first search.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.5 7 / 11

Depth-first Branch-and-Bound

Suppose we want to find a single optimal solution.

Suppose bound is the cost of the lowest-cost path found to a
goal so far.

What if the search encounters a path p such that
cost(p) + h(p) ≥ bound?
p can be pruned.

What can we do if a non-pruned path to a goal is found?
bound can be set to the cost of p, and p can be remembered
as the best solution so far.

Why should this use a depth-first search?
Uses linear space.

What can be guaranteed when the search completes?
It has found an optimal solution.

How should the bound be initialized?

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.5 8 / 11

Depth-first Branch-and-Bound: Initializing Bound

The bound can be initialized to ∞.

The bound can be set to an estimate of the optimal path
cost. After depth-first search terminates either:
▶ A solution was found.
▶ No solution was found, and no path was pruned
▶ No solution was found, and a path was pruned.

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.5 9 / 11

Which shaded goals will be best solutions so far?

Q W

T

U

Y

R

V

© 2023 D. L. Poole and A. K. Mackworth Artificial Intelligence 3e, Lecture 3.5 10 / 11

	lect_03_3_h.pdf
	lect_03_4_h.pdf
	lect_03_5_h.pdf

