
CS 157 - Introduction to Programming

and Modeling

Object-oriented Programming

Dr. Stephen P. Carl

Quote of the Day

The programmer, like the poet, works only
slightly removed from pure thought-stuff. He
builds castles in the air, from air, creating by
exertion of the imagination. Few media of
creation are so flexible, so easy to polish and
rework, so readily capable of realizing grand
conceptual structures...The magic of myth
and legend has come true in our time.

- Fred Brooks

The Mythical Man-Month (1975)

Programming is Modeling

Software is a model of some "real" thing or process

• Audio programs model sound waveforms digitally

• Flight Simulators model the "look and feel" of piloting an aircraft

• Artificial Neural Networks model some abstraction of the brain

• Today's realistic games model military, physical, and biological
processes

Modeling involves Abstraction

Abstraction means to whittle away details in order to distill a problem
to its essence.

Software is complex; abstraction helps to tame the complexity. It
allows us to focus on the problem rather than the details of the
solution.

1-4

What is an Object?

Any value that can be operated on like numbers, strings, and lists,
are considered objects. The type of an object dictates the possible
range of values and legal operations for a particular set of values.

In programming language design terms, anything that can be
assigned to a variable or passsed as an argument to a function is
considered a first-class object.

In Python, functions and modules are also first-class objects!

In general, an object has a set of attributes and operations though not
all objects necessarily have both.

Components of an Object

An attribute is just a characteristic of the object. For example,

• Number: value, whole number or decimal, etc.

• List: length, values stored, etc.

• Car: price, engine type, body style, two- or four-door

• Graphical shape: kind of shape, color, size, location

Functions and modules also have attributes, such as __name__ and
docstring (when defined).

Components of an Object

Operations are things the object can do, or be done to the object:

• Number: add, subtract, multiply, etc.

• List: append, slice, etc.

• Car: accelerate, turn, stop, report speed

• Graphical shape: draw, move, rotate

What is a Class?

All objects are an instance of some class

A class describes the attributes and operations which are specific to
a particular set of objects of a particular type. You can think of a
class as a template from which specific objects can be made.

We can use the class feature to create our own types, and therefore
our own kinds of objects.

For example, the graphics module defines each component as a
class with its own attributes and operations, which we've been using
all this time.

5-8

Class Hierarchies

A class hierarchy organizes the relationships between different
classes of objects

Humans characterize objects into class hierarchies all the time:

• Biologists organize living things in taxonomies

• Sociologists organize people into categories

• We organize movies, music, and books into genres, and so forth

The 3-Legged Stool of OOP

Encapsulation

• A class combines attributes and operations into a single unit.

Inheritance

• Sharing functionality between related classes.

Polymorphism

• Literally, "many shapes". Variables can refer to objects from related
classes.

Programming using Classes and Objects

We've just been through the most basic concepts of any
object-oriented program. Now we'll begin to talk about object-oriented
features of the Python language.

In the Python class construct, attributes are called instance variables
and operations are called methods.

Each class is defined by code which describes the valid instance
variables and the computations to be performed by the methods.

Example Python Class

 class Point:

 '''Class for representing (x,y) coordinates'''

 def __init__(self, x, y):

 ''' Create a new point at (x, y) '''

 self.x = float(x)

 self.y = float(y)

 self.setFill = 'black'

 self.setOutline = 'black'

9-12

Example Python Class

more methods for class Point:

 def move(self, dx, dy):

 ''' move the point by the given amounts dx, dy '''

 self.x = self.x + dx;

 self.y = self.y + dy;

 def getX(self):

 ''' return the x-coordinate '''

 return self.x

 def getY(self):

 ''' return the y-coordinate '''

 return self.y

Creating Instances

A new instance of a class (an object) is created by invoking the
class constructor, called using the class name. This automatically
calls __init__ to create and initialize the instance variables for the
new object. For example:

 pt = Point(100, 100) # creates a new Point: implicitly calls __init__

In constrast to local variables in regular functions, instance variables
are shared by all methods of the class.

Note to self

The keyword self in __init__ refers to the object being created. You
can think of it as a special parameter specific to classes; it always
comes first in the parameter list in each method.

When calling a method, self is passed implicitly; it takes on the
value of the object making the method call. We call this the
invoking object.

 y = pt.getY() # pt implicitly passed to getY method

In getY the parameter self is bound to the object pt

Example from the Textbook

 from random import randrange

 class MSDie:

 '''Class for representing dice rolls'''

 def __init__(self, sides):

 self.sides = sides

 self.value = 1

 def roll(self):

 self.value = randrange(1, self.sides+1)

 def getValue(self):

 return self.value

13-16

