
CSci 157 - Introduction to

Programming and Modeling

Iteration Statements

Dr. Stephen P. Carl

Iteration Statements

An iteration statement is used to execute a block of one or more
statements repeatedly. Iteration statements are more commonly
called looping statements or just loops

No more clicking the mouse repeatedly to get a shape to move
across the screen. No more copying and pasting chunks of code
which differ in only small ways.

Python provides the for statement for definite loops and the while
statement for indefinite loops. We've worked with for loops a bit
already, so let's dive into the while statement.

The WHILE statement
The while statement (AKA while loop) appears quite simple at first.
Consider the following template:

while <condition>:

 <body>

Here <condition> is a boolean expression and <body> is an
indented code block that contains the statements to be iterated by the
loop.

First, <condition> is evaluated. If false, control skips over the
statements in <body>. Otherwise the statements are executed, after
which control returns to the <condition> which is evaluated again.
<body> is executed until <condition> becomes false.

While Loop Design

In practice, while loops needs a bit more design. Here's a simple
example that tries to sum up the first N integers starting with 1.

 while i <= N:

 sum = sum + i

Obviously, by itself this won't work. What values do i and sum need
to start with for this to give the right answer? Even with these initial
values, what else is missing?

1-4

Initialize/Test/Update

Here, we want <condition> to be true the first time through (though
in general that's not required). Prior to the while we need to
Initialize the loop variables. For example:

 sum = 0

 i = 1 # initialize loop variable

A loop variable is any variable that helps determine if the
<condition> is True or False

Initialize/Test/Update

Assume for now that N is a positive integer greater than or equal to 1.

On entering a loop the first time, we Test the condition. In this case,
i <= N will be true, so the loop body is executed.

Once each statement in the loop body has been executed, we "loop
back" to the top and once again Test the condition. This continues
until the condition becomes False

Initialize/Test/Update

What happens if i <= N is never false? The loop never terminates!
This possibility is called an infinite loop - rarely a good thing.

Since the initial value of i made the condition true, we need to
Update it so, eventually, its value becomes greater than N.

 while i <= N: # Test
 sum = sum + i
 i = i + 1 # Update

Complete Example

Here is a complete function for summing from 1 to N, where N is
passed as an argument:

 ## sum_to_N : int -> int
 def sum_to_N(N):
 '''computes the sum of 1..N'''
 sum = 0
 i = 1 # Initialize
 while i <= N: # Test
 sum = sum + i
 i = i + 1 # Update
 return sum

5-8

Example: The Rising Sun

Sometimes, the Initialize and Update bits are done for us:

 ## onMouseClick : graphics.Circle -> None
 def onMouseClick(sun):
 '''moves the sun to the top of the window'''
 while sun.getY() > 0:
 sun.move(0, -5) # move sun 5 pixels up

The sun object is initialized with the actual argument when the
function is called, and move changes the y-coordinate of sun for us.

Note: this function is not quite complete...

Example: Validating Input

In the sum_to_N example, we required that N be positive and greater
than or equal to 1. Imagine a program that uses this function and
gets the value of N as input from the user.

People are notorious for goofing up data entry. How do we ensure
input value of N is positive? Or within a some specified range of
values? Use a loop!
 number = int(input("Enter a positive value: ")

 while (number < 1):
 print("Not a positive value! Try again:")
 number = int(input("Enter a positive value: ")

 print(sum_to_N(number))

Multiple loop variables

If more than one variable is involved in Test, they all need to be
initialized and updated properly.

For example, consider the problem of whether a Point we generate
is inside the bounds of a window. We have to check both x- and
y-coordinates against the width and height of the canvas, so there will
be two loop variables.

Or maybe we want to move a graphic object until it hits the side of the
window, and have it 'bounce' off.

Example: Checking Window Bounds

Say we call a function fractalPts that generates Point objects for
plotting a math function, continuing until one leaves the visible
window:
 Point pt = fractalPts(f1, f2)
 x = pt.getX() // Init #1
 y = pt.getY() // Init #2
 # canvas refers to the GraphWin object
 while (x >= 0 and x <= canvas.getWidth()) and
 (y >= 0 and y <= canvas.getHeight()):
 c = Circle(pt, 5, 5)
 c.draw(canvas)
 pt = fractalPts(f1, f2) // generate next pt
 x = pt.getX() // Update #1
 y = pt.getY() // Update #2

9-12

The do/while loop

Unlike some programming languages, Python does not have a
do...while loop - similar to while loops except the condition test
occurs after the loop body. This would be useful when we know we
want the loop body to execute at least once.

This and other common patterns can be emulated using the while
statement. These patterns are discussed in detail in the text; have a
look at the Common Loop Patterns section.

The FOR statement

As we've seen, for is used when we want to iterate over a
sequence. The general form is:

for <var> in <sequence>:

 <body>

The variable given by <var> is assigned each element of the
<seqence> in turn; for each such value, the statements in <body>
are executed. When the sequence has been exhausted, execution
continues with the statement following <body>

For Loop Example

Here's another version of the function for summing from 1 to N, using
for instead:

 def sum_to_N(N):
 sum = 0
 for i in range(1, N+1):
 sum = sum + i
 return sum

Because it takes a little thought to get the limits of the range right, I
think while works better here.

Contrasting for and while

As we've seen, for is used when we want to iterate a known number
of times, controlled by the length of a sequence or the numbers in a
range. We call this a definite loop.

By contrast, the while loop is an indefinite loop, used when we may
not know how many iterations are needed.

13-16

