
CS 157 - Introduction to Programming and Modeling

Function Defintions

Dr. Stephen P. Carl

Quote of the Day

Any fool can write code that a computer can
understand. Good programmers write code
that humans can understand.

- Martin Fowler

Abstraction and Decomposition

When solving large problems, we use the concepts
of abstraction and decomposition.

Abstraction is used in many different ways. In the
big picture, abstraction is the stripping away of
irrelevant detail to get at the core of the problem.

For our purposes, it can also mean
naming a pattern. Once we identify a pattern in
code and give it a name, we can just use the name
from then on.

Abstraction and Decomposition

Decomposition is the process of breaking down
large, difficult problems into smaller problems that
are easier to understand, and therefore to solve.

Our goal here is to find ways to break large coding
problems into smaller pieces called functions.

1-4

Functions Define Operations

Like the built-in functions in Python, we can define
and call our own functions to perform any operation
we require.

Functions should be designed to be:

• short and easily understandable

• targeted to a specific task

• generalized, by being applicatable to a wide range
of values

Defining New Functions

A new function definition is introduced by the
keyword def which defines the name of the new
function. The definition is made up of the header
and a body.

The function header has the following format:

 def functionName(parameters):

where parameters is a parenthesized list containing
zero or more parameter names.

Function Header Examples

• A function with an empty parameter list

 def begin():

• A function with a single parameter

 def onMousePress(pressPoint):

• A function that takes two parameters to compute a
number

 def distance(point1, point2):

Parameter Lists

The parameter list is used to pass data to a function
needed to perform its computation. As we’ve seen,
a function can have zero, one, or more parameters.

Each name inside the parentheses is essentially a
new variable name; the actual arguments used
when the function is called are implicitly assigned to
these variables.

The parameter names are separated by commas
when there is more than one. A common error is to
leave off the parens () when no parameters exist.

5-8

Function Body

The function body contains the executable
statements needed to do the intended computation.
Statements are executed in order starting with the
first statement after the function header.

Any kind of statement is valid in the function body,
including those which alter flow of control, such as
selection, iteration, or calls to other functions.

Design Rules for Functions

• Every function will have a signature comment

• Every function will have a short description called
a docstring

• Every function will have a definition

• Every function will have examples in the form of
runnable test cases

The Signature Comment

Start with a comment showing the types of the
parameters and return value, if any. I use two #’s to
make this stand out. For example:

squaresum : list-of-int -> int

This says the function squaresum takes a list of
integers and returns an integer (presumably the
sum of their squares)

Purpose and Definition

Next comes the implementation. After the function
header, we add a docstring, a brief but complete
description of the computation the function is
supposed to do, followed by the code which
implements it.

def squaresum(nums):

 """ computes the sum of squares of each value in nums """

 sum = 0

 for x in nums:

 sum = sum + x * x

 return sum

9-12

Docstrings

By the way, docstrings allow multi-line comments
and can also be used for the file header comment:
"""

sumsquares.py - functions on squared numbers in a list

 author - spc

"""

Test Cases

Test cases let us check the function’s correctness
right away. Write tests to exercise as many different
cases as you can think of, remembering to consider
boundary conditions. For example:

use the pytest tool to run tests

def test_squaresum():

 assert squaresum([]) == 0

 assert squaresum([1, 2, 3]) == 14

By doing this, we ensure that we really understand
what this function is supposed to do.

Support for Testing

The pytest tool supports testing by running any
test functions it finds automatically. All test functions
start with the test_ prefix.

The assert statement requires the boolean
expression which follows it to be True. Pytest runs
each test function and flags any assertion that fails:
pytest squares.py

========== 2 passed in 0.03 seconds ==========

Support for Testing

Or, should there be an error in the function
sumsquares you might see something like this:
pytest squares.py

========== FAILURES ==========

_______test_squaresum_______

 def test_squaresum():

> assert squaresum([1, 2, 3]) == 14

E assert 6 == 14

E + where 6 = squaresum([1, 2, 3])

13-16

