
CS 157 - Introduction to

Programming and Modeling

Graphics and Event-driven Programs

Dr. Stephen P. Carl

Quote of the Day

[Computer programming] resembles the
magic of legend in this respect, too. If one
character, one pause, of the incantation is
not strictly in proper form, the magic doesn't
work. Human beings are not accustomed to
being perfect, and few areas of human
activity demand it. Adjusting to the
requirement for perfection is, I think, the
most difficult part of learning to program.

- Fred Brooks

The Mythical Man-Month, 1975

Graphics: The Basics

In our bit-mapped graphical displays, every screen is divided into a
grid of thousands of picture elements, or pixels. Each pixel can be a
different color.

• In one sense, a window is just a rectangular region of pixels. A
window of width 200 and height 300 is made up of 200 * 300 or
60,000 pixels. But in reality a window is much more than that.

• In graphics systems, a window has its own identity, so it is an
object that can be drawn on, moved, and modified in various ways.
Typically, a window is made up of a frame, a title bar, and a
canvas.

Graphics: More Basics

With the graphics module, we can write code that draws points, lines,
text, or shapes of various kinds. The simple graphics primitives can
then be combined into more complex objects onscreen.

When we want to draw into a window, we actually draw on the
window's canvas. To draw an object, we first have to know where on
the canvas we want it to go, also known as its coordinates. A location

on the screen is modeled by the Point type.

1-4

Graphics: More Basics

A Point is simply an (x, y) coordinate pair, x and y both numbers,
representing the row and column of a location on the canvas. This
will be a pixel.

For example, the coordinate (40, 50) means "40 pixels to the right
and 50 pixels down" from the upper left-hand corner of the canvas,
which is (0, 0).

Coordinate Systems

Relating a Window to Coordinate Simple Graphics Example

 import graphics

 window = graphics.GraphWin('Click Me!')

 pt = window.getMouse()

 txt = graphics.Text(pt, "Click!")

 txt.draw(window)

 pt = window.getMouse()

 txt = graphics.Text(pt, "Click!")

 txt.draw(window)

 window.getMouse()

 window.close()

5-8

Programming with Graphics

The first statement in the example is:

 import graphics

This tells the system to load the contents of the module graphics
which contains a set of functions and class definitions designed for
drawing graphics and interacting with windows.

The names GraphWin, Point, and Text are classes defined in this
module.

The graphics module was developed by John Zelle, the author of our
textbook.

Understanding the graphics module - classes

To really understand how to use the graphics module, we need to

learn about the Python class construct.

A class defines the attributes of a specific set of objects. You've seen
this before, when we queried the type of the values we've used. For
example, if you call the function type(int) the result is <class 'int'>

Python programmers use class to create new data types. The class
defines the attributes and operations of the new type.

Understanding the graphics module - methods

A method is a function associated with a class, or specific type of
object.

Methods are called using the same dot operator used to select a
specific function from a module. This should reinforce the idea that a
class is essentially a sub-module - a smaller, more specialized type
contained within a module.

In the code example, several methods are called:

 window = graphics.GraphWin('Click Me!')

 window.getMouse()

 txt.draw(window)

Understanding the graphics module - methods

Specialized methods called object constructors, create new
instances (a.k.a. objects) of a class type.

The method names in the example that start with a capital letter such

as GraphWin and Text are object constructors.

By convention, Python programmers capitalize these special method
names and leave all others lowercase.

9-12

All types have methods

Just so you know, most every type in Python we've looked at already
is defined as a class, and has one or more methods defined
specifically on that type.

For example, type <class 'str '> that we informally call "strings"
have several methods that work with them:

>>> str = 'ladder'

>>> str.upper()

'LADDER'

>>> str.find('d')

2

The GraphWin class

The next statement in the example:

 window = graphics.GraphWin()

creates an object of type GraphWin and assigns it to the variable

window. GraphWin objects provide functionality to manipulate
windows, for example plotting points, changing the background, and
handling mouse and keyboard events.

Object constructors consist of the name of the class followed by a
parenthesized list of values.

The GraphWin class

The parenthesized list is called an argument list. In an object
construction, the argument list specifies the object's initializers. We
are using the defaults here, and haven't provided any arguments.

GraphWin can accept a title string, a value for the width of the
window (in pixels), and a value for the height of the window. For
example:

 win = graphics.GraphWin('New Window', 200, 300)

The Text class

The next two statements:

 txt = graphics.Text(pt, "Click!")

 txt.draw(window)

construct a Text object and call its draw method.

To construct a Text object we pass it the coordinates of the point
where the Text will be centered and then the text to display as a
string.

The draw method operates on the Text object. It tells it which
window to draw the text into.

13-16

The Point Class

Coordinates are represented by objects belonging to the Point
class. The method getMouse returns a Point object giving the
coordinates inside the window where the mouse was clicked. We can

also create a Point using object construction like this:

 pt = graphics.Point(100, 150)

The arguments are the x- and y-coordinate of the Point. We can draw

a point as well, like we did the Text

The Line Class

Another graphics class, for drawing lines, is the Line class. An
example object construction for Line:

 ln = graphics.Line(graphics.Point(100, 150), graphics.Point(200, 0))

 ln.draw(window)

This draws a line from coordinates (100, 150) to (200, 0) on the
canvas. Let's see if we can figure out what this would look like in a
200 by 200 window.

Object constructions work the same way for all classes. The only
difference is that different classes have different argument lists,
because each class has its own set of initializers.

More Graphics Classes

To draw shapes, we have the following classes:

• Rectangle creates a transparent rectangle with a border. For
example:

 r = graphics.Rectangle(graphics.Point(20, 50), graphics.Point(50, 80))

• Circle creates a transparent circle with a border. For example:

 c = Circle(graphics.Point(30, 40), 10.5)

• Oval creates an oval with a border. For example:

 o = graphics.Oval(graphics.Point(10,20), graphics.Point(30,40))

There are also classes for creating arbitrary polygons, entry boxes,
and displaying images. See the docs for details.

Reactive Programs

Our textbook introduces programming in the context of
reactive programs, which are programs that perform operations only
in response to input from the mouse or the keyboard.

but, not all our programs will be strictly reactive

Most modern computer systems have a bit-mapped graphical display
with a mouse for interacting with the screen. The first full-scale
implementation of this type of system was done by Xerox PARC in
the 1970's, and brought to "the rest of us" by Apple's Macintosh in
1984. This style of graphical user interface encourages writing
reactive programs.

17-20

