
CS 157 - Introduction to Programming

Using Numbers in Python

Dr. Stephen P. Carl

Quote of the Day

Not everything that can be counted counts,
and not everything that counts can be
counted.

- Albert Einstein

Objects

In Python, all values are represented by objects and relationships
between them. Three things define an object:

• its unique identity, such as an address in computer memory

• its data type

• its value

Data Types

A data type describes a set of values and the operations that can be
performed on those values.

For example, the int data type includes all whole numbers, positive,
negative, and 0; and its legal operations which include (but not limited
to) addition (+), subtraction (-), multiplication (*), and the different
kinds of division (/, //, %).

1-4

Numbers

Python provides several data types for working with numbers. The
most often used of these are int representing integers and float
representing real numbers.

Another type, complex, deals with complex numbers of the form
a + ib where i is the square root of -1.

Order of operations
In algebra we have rules governing the order of operations:

• multiplication/division/modulus are done first (left to right)

• addition/subtraction are done next (again, left to right)

• order can be changed by using grouping symbols ()

Evaluating expressions in Python works the same way, except there
are more operators.
 x = (12 + 28) // 5 * 3.5 - 10

 x = 40 // 5 * 3.5 - 10

 x = 8 * 3.5 - 10

 x = 28 - 10

 x = 18

Mathematics

Along with the built-in operations on numbers, Python provides a set
of the most commonly used mathematical functions and constants.
These are defined in the math module. Some useful operations
provided by this class include:

• Special Numbers: e, pi

• Trigonometric functions: sin, cos, tan

• Exponentials, powers, square roots: exp, pow, sqrt

• Absolute value, rounding and truncation: abs, floor, ceil

Using the math module

To use functions or values defined in math you must first import it:
 import math

Any module we use must be imported in this way. An import may be
done at any time in the Python shell, but in a program, all import
statements typically come first, before any statements or function
definitions.

Once a module is imported, we access its functions (or values) using
the dot operator:
 math.cos(0) # compute the cosine of 0 radians

5-12

Using the math module

A few more examples:
 math.log(10) # compute the natural logarithm of 10

 math.sin(math.pi) # compute sine(3.14159...)

The trigonometric functions take angles in radians, so their
arguments are of type float. Use math.radians to convert from
degrees to radians.

Getting Output from Programs

When running a program on the command line we won't see the
results of each expression, so we need the print function to output
any results that are computed. This function is extremely flexible and
has many bells and whistles, so we'll start with just the basics.

To print results of some math functions to the Terminal window (also
called the console) we could do:
 print(math.pow(2, 10)) # outputs 1024 (2 to the 10th power)

 print(math.cos(math.pi)) # outputs -1.0 (cosine of 3.14159...)

Calling print with no arguments prints a blank line.

Using Output Methods

It's useful to be able to combine text and numbers so we can more
easily interpret a program's output. Say I wanted a program to output
something like this:

 The time is 10:15 am

and there is a variable hours that holds 10, and a variable minutes
that holds 15. Then we can do this:

 print('The time is ', hours, ':', minutes, ' am')

Combining strings and numbers

Characters between single- or double-quotes are called string literals.

When the + operator is given string literals as operands, it's meaning
changes from addition to concatenation. The concatenation operator
combines two strings into a new object:

If only one operand is a string, as in:

 "The time is " + hours

the operation fails. The non-string operand must first be converted to
a string (can you guess how?).

13-16

Generating Random Numbers

The module random provides functions to generate a stream of
pseudorandom numbers in various ranges. Random numbers are
useful in many games and simulations.

To generate a random (float) value in the range [0.0,1.0) do this:

 rand_val = random.random()

To generate a random (float) value in any desired range, use
uniform like so:
 rand_val = random.uniform(1.0, 6.0) # generates a value in range [1,6]

 rand_val = random.uniform(2.5, 10.0) # generates a value in range [2.5,10.0]

Color

Another use of numbers is to define colors. Most displays generate
colors by combining red, green, and blue (RGB) components. The
function color_rgb provided by the graphics module is used to
create a new color by specifying each RGB value in the range 0..255
like this:

 import graphics

 c = graphics.color_rgb(20, 20, 166) # a nice deep blue

Many online resources provide color wheels to help choose RGB
values for a desired color. One such resource is at
https://www.colorspire.com/rgb-color-wheel/

Provisos and Quid Pro Quos

The familiar number systems integer and real numbers are present
in Python and in general work as expected. However, computers
impose limitations on numbers that can surprise us in exceptional
cases.

• Computers only represent a finite subset of the integers, though the
int type can represent arbitrarily-large integers

• Computers represent most real numbers only as approximations

• Computing with very large or very small numbers can be tricky

Python Math Bloopers

Try these expressions in the Python interpreter:

 3 * (1 / 3)

 3 * (1 // 3)

 math.pow(math.sqrt(2), 2)

 2 - math.pow(math.sqrt(2), 2)

 (2 - math.pow(math.sqrt(2), 2)) * 10e20

 '0' + '4'

 '0' + '4' - '3'

 '0' + 4

17-20

