Sewanee: The University of the South

CS 270: Computer Organization

Bits, Bytes, and Integers

Instructor:
Professor Stephen P. Carl

Sewanee: The University of the South

Everything is Bits

A bit (binary digit) is either 0 or 1
By Interpreting “strings” of bits we can
® Represent 15213,,as11101101101101,
= Represent 1.20,,as 1.0011001100110011[0011]...,
= Represent individual machine instructions
Electronic Implementation of bits:
® Easy to store with bistable electronics
= Reliably transmitted on noisy and inaccurate wires

0 | 1 ' 0o—

3.3V —
2.8V —

0.5V —
0.0V —

Page 1

Sewanee: The University of the South

Base 10 (decimal) numbers

Digits: 0,1, 2,3,4,5,6,7,8,9
Example:

3271 =
(3x103) + (2x10?) + (7x10%) + (1x10°)

Number Base B = B symbols per digit:
Base 10 (Decimal): 0,1,2,3,4,5,6,7,8,9
Base 2 (Binary): 0,1

Sewanee: The University of the South

Base 2 (binary) numbers

Number representation:
d;,dy, ... d;d,is a 32 digit number

- 31 30 1 0
value=d;; x 231 +d;;x 230+ .. +d; x 21 +d;x 2

Binary: 0,1 (A binary digit is called a bit)
In C, written as Ob... (e.g., 0b11011)

0b11010 = 1x2%+ 1x23 + 0x22 + 1x21 + 0x2°
=16+8+2
=26

Can we find a base that converts to binary easily?

Page 2

Sewanee: The University of the South

Base 16 (hexadecimal) numbers

Hex digits: 0,1, 2,3,4,5,6,7,8,9,A,B,C,D,E, F
Normal digits + 6 more from the alphabet

In C, written as Ox... (e.g., OXFAB5 or Oxfab5)

Conversion: Binary<Hex
1 hex digit represents 16 decimal values
4 binary digits represent 16 decimal values

=>1 hex digit replaces 4 binary digits
One hex digit is a nibble; two make a byte

Example:

1010 1100 0011 (binary) = Ox ?

Sewanee: The University of the South

Decimal vs. Hex vs. Binary
N\

R

%0*000\0\(\’0

0 0 [0000

Examples: 1]1] o001
2 2 | 0010

- 3 3 [0011

1010 1100 0011, = OXAC3 220
5 5 [0101

10111, = 0001 0111, = 0x17 6 | 610110
7 7 [0111

- 8 8 |1 1000
0x3F9 = 0011 1111 1001, 8 1811000
A [10] 1010

B |11 1011

Cc [12] 1100

D |13 1101

E [14] 1110

F [15] 1111
MEMORIZE!

Page 3

Sewanee: The University of the South

Encoding Byte Values

Byte = 8 bits
Binary: 0000 0000, to 1111 1111,
Decimal: 0,, to 255,
Note: In C, first digit must not be 0
Hexadecimal 00,¢ to FF,¢
Base 16 number representation
Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

Use subscripts when it isn’t clear what representation is being used.

For example:
100 could be 100, (4), 100,, (100), or 100, (256)

Machine Words

All Machines define a “Word Size”, which is the nominal size of integer-
valued data / machine addresses

® Until recently, most machines used 32 bit words (how many bytes?)
This limits physical address space to just over 4GB (232 bytes)
Fast becoming too small for memory-intensive applications

= Newer systems use 64 bit words
Intel IA64 and EMT64T (Itanium, Xeon, and others), AMD64 (Opteron and Athlon)

Potential address space = 1.8 X 10'° bytes (16,384 petabytes)
Our x86-64 machines support 48-bit addresses: 256 terabytes

® Machines support multiple data formats
Fractions or multiples of word size
Always integral number of bytes

Page 4

Sewanee: The University of the South

Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit x86-64
1 1 1

char

short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
long double - - 10/16
pointer 4 8 8

Byte Ordering

How should bytes within multi-byte words be ordered in
memory?

Two Conventions
= Big Endian: Sun, PPC Mac, Internet
= Least significant byte has highest address
= Little Endian: Intel x86, MIPS
= Least significant byte has lowest address

Former Sen. Dale Bumpers (D-Arkansas) allegedly proposed
a third

Page 5

Byte Ordering Example
Big Endian - Least significant byte has highest address
Little Endian - Least significant byte has lowest address
Example

= Variable x has 4-byte representation 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
L1 o1]23[asfe7 | | |

Little Endian 0x100 0x101 0x102 0x103
| | | 67 | a5 [23 [01 | | |

Sewanee: The University of the South

Examining Data Representations

Code to Print Byte Representation of Data

// Prints len 8-bit data items
// starting at start as a byte array
typedef unsigned char *pointer;

void show_bytes (pointer start, int len) {
int i;
for (1 = 0; i < len; i++) {
printf ("0x%p\t0x%.2x\n",
start+i, start[i]);
} printf("\n");
}

printf directives:
$p: Print pointer
$x: Print Hexadecimal

Page 6

Sewanee: The University of the South

show_bytes Execution Example

int a = 15213;
printf ("int a = 15213;\n");
show_bytes ((pointer) &a, sizeof(int));

Result (Linux):

int a = 15213;

Ox11ffffcb8 0x6d
0x11f£fffcb9 O0x3b
0x11ffffcba 0x00
Ox11ffffcbb 0x00

Sewanee: The University of the South

Representing Integers
Decimal: 1521
int A = 15213; ecimal: 15213
int B = -15213; Binary: 0011 1011 0110 1101
long int C = 15213; Hex: 3 B 6 D
A :1A32/x86-64 Sun C:1A32 x86-64 Sun
6D 00 6D 6D 00
3B 00 3B 3B 00
00 3B 00 00 3B
00 6D 00 00 6D
00
B :1A32/x86-64 Sun 00
00
93 FF 50
c4 FF
FF c4
FF 93 \ Two’s complement representation
(Covered later)

Page 7

Sewanee: The University of the South

Representing Pointers

int B = -15213;
int *P = &B;

Sun P IA32 P x86-64 P

EF D4 0oc
FF F8 89
FB FF EC
2C BF FF
FF
TF
00
00

Different compilers & machines assign different locations to objects

Sewanee: The University of the South

Representing Strings

Strings in C char S[6] = "15213";
= Represented by array of characters
= Each character encoded in ASCII format S : Linux/Alpha Sun
= Standard 7-bit encoding of character set 31 31
= Character “0” has code 0x30 35 35
— Digiti has code 0x30+i 32 32
= Strings must be null-terminated 31 31
= Final character = (char) 0 33 33
00 00

Compatibility
= Byte ordering not an issue

Page 8

Boolean Algebra

Developed by George Boole in 19th Century, Boolean Algebra is an algebraic
representation of logic, which encodes “True” as 1 and “False” as 0

Basic operations: AND, OR, NOT, XOR

Given boolean variables P, Q, the operations mean the following:
= PAND Q->1if both Pand Qare 1, and 0 otherwise
= PORQ->1if either PorQare 1, and 0 otherwise

= NOTP->1ifPis0, and 0 otherwise

P XOR Q -> 1if P and Q are different, and 0 otherwise

Sewanee: The University of the South

Truth Tables in Boolean Algebra

And is represented by ‘&’ in C:

p & q =1 when both p=1 and gq=1
&|0 1

o

1

- O

0
0
Or is represented by ‘I’ in C:
p | g =1 when either p=1 or q=1
10 1
0|0 1
111 1

Page 9

Sewanee: The University of the South

Boolean Algebra

Not is represented by the ‘~’ in C:
~p =1 when p=0

- Ol

1
0

Exclusive-Or (Xor) is the ‘A’ in C:
pAq = 1 when either p=1 or q=1, but

not both
A0 1
0|0 1
111 O

Sewanee: The University of the South

Application of Boolean Algebra

Boolean algebra was first applied to Digital Systems by Claude Shannon in
his MIT Master’s Thesis, which showed that boolean operations could
be modeled in electronic circuits (1937).

The stage was set for building computers out of digital electronics.

Page 10

Sewanee: The University of the South

General Boolean Algebras

Operate on Bit Vectors

Operations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 2 01010101 ~ 01010101

01000001 01111101 00111100 10101010

All of the Properties of Boolean Algebra Apply

Sewanee: The University of the South

Representing & Manipulating Sets
Representation
= A w-bit vector can represent subsets of {0, ..., w—1}
" a,=1ifj EA
01101001 {0,3,5,6}
76543210
01010101 {0,2,4,6}
76543210
Operations
& Intersection 01000001 {0,6}
| Union 01111101 {0,2,3,4,5,6}
A Symmetric difference 00111100 {2,3,4,5}
~ Complement 10101010 {1,3,5,7}

Page 11

Sewanee: The University of the South

Bit-Level Operations in C

Operations &, |, ~, M all available in C
= Canapply to any “integral” data type
= long, int, short, char, unsigned
= View each argument as a bit vector
= Qperations applied bit-wise

Examples (using char data type)
~0x41 --> O0OxBE

~01000001, --> 10111110,
~0x00 --> OxFF
~00000000, --> 11111111,

0x69 & 0x55 --> O0x41
01101001, & 01010101, --> 01000001,

0x69 | 0x55 --> 0x7D
01101001, | 01010101, --> 01111101,

Sewanee: The University of the South

Contrast: Logic Operations in C

Recall the Logical Operators &&, | |, and !
= View 0 as “False”
= View all nonzero values as “True”
= AlwaysreturnOor 1
= Early termination (short circuit)

Examples (using char data type)
10x41 --> 0x00
10x00 --> 0x01
110x41 --> 0x01

0x69 && 0x55 --> 0x01
0x69 || 0x55 --> 0x01
p && *p (avoids null pointer access)

Page 12

Shift Operations

Left Shift x << y means:
= Shifts bit-vector x left y positions
® Throw away extra bits on left
= Fill with 0’s on right

Right Shift x >> y means:
= Shift bit-vector x right y positions
® Throw away extra bits on right
= [ogical shift fill with 0’s on left

= Arithmetic shift replicates the most significant bit
on right

Shift is Undefined if:
= Shift amount < 0 or = word size

Examples of using Shift

Variable x is: 01100010

x << 3 00010000

Xx>> 2 (logical) | 00011000

x >> 2 (arith.) | 00011000

Argument x 10100010

x << 3 00010000

X>> 2 (logical) | 00101000

x >> 2 (arith.) | 11101000

Page 13

